
App Development with Swift Certified User Objective Domain Crosswalk

Apple App Development with Swift

Objective Domains Crosswalk
(Certified User & Associate Exams)

www.certiport.com © Copyright 1996-2024 Pearson Education Inc. or its affiliate(s). All rights reserved. Page 1 of 6

App Development with Swift Certified User

Notes
1 Xcode Developer Tools 1

1.1 Identify and use the features of the Xcode interface 1.1 Identify and use the features of the Xcode interface
1.1.1 Navigate Xcode 1.1.1 Navigate Xcode
1.1.2 Create and modify views with Interface Builder 1.1.2 Create and modify views with Interface Builder

1.1.3
Demonstrate how to access documentation and
help

1.1.3
Demonstrate how to access documentation and
help

1.2 Demonstrate how to build and run an app 1.2 Demonstrate how to build and run an app
1.2.1 on the iOS simulator 1.2.1 on the iOS simulator
1.2.2 on the iOS device 1.2.2 on the iOS device

1.3 Use debugging techniques to resolve errors Added clarity 1.3

1.3.1 Set breakpoints and step through code line by line No Change 1.3.1 Set breakpoints and step through code line by line
1.4 Position and lay out UIKit objects

1.4.1 Use auto layout
1.4.2 Embed objects in stack view
1.4.3 Use alignments and constraints
1.4.4 Navigate UI components via Document Outline
1.4.5 Implement app personality

2 Swift Programming Language 2
2.1 Declare and use basic Swift types 2.1 Declare and use basic Swift types

2.1.1 Describe and use data types and operators 2.1.1 Describe and use data types and operators

2.1.2
Demonstrate the use of type casting in both safe
and unsafe ways

2.1.2
Demonstrate the use of type casting in both safe
and unsafe ways

2.1.3 Demonstrate when to use constants and variables 2.1.3 Demonstrate when to use constants and variables
2.1.4 Interpret and use basic types 2.1.4 Interpret and use basic types

2.2 Manage data using collection types 2.2 Manage data using collection types
2.2.1 Arrays 2.2.1 Arrays
2.2.2 Dictionaries 2.2.2 Dictionaries

2.3 Know how and when to apply control flow and loops 2.3 Know how and when to apply control flow and loops
2.3.1 Use logical operators 2.3.1 Use logical operators
2.3.2 Use Guard 2.3.2 Use Guard
2.3.3 Use range operators 2.3.3 Use range operators

No Change

No Change

App Development with Swift Certified User Objective Domain Crosswalk

Swift Programming Language

Xcode Developer Tools

Use debugging techniques including, but not limited to,
breakpoints, watchpoints, and logging to resolve errors

OLD NEW

Removed to align with
Swift UI update

www.certiport.com © Copyright 1996-2024 Pearson Education Inc. or its affiliate(s). All rights reserved. Page 2 of 6

App Development with Swift Certified User
NOTES

2.4 Use functions 2.4 Use functions
2.4.1 Organize and structure code 2.4.1 Organize and structure code
2.4.2 Create and call a function 2.4.2 Create and call a function
2.4.3 Demonstrate how to use a function’s return value 2.4.3 Demonstrate how to use a function’s return value

2.4.4
Customize internal, external, and anonymous
naming of parameters in functions

2.4.4
Customize internal, external, and anonymous
naming of parameters in functions

2.4.5 Implement default parameter values 2.4.5 Implement default parameter values
2.5 Demonstrate proper use of structs, classes and enums 2.5 Demonstrate proper use of structs, classes

2.5.1 Define and use properties and methods 2.5.1 Define and use properties and methods
2.5.2 Differentiate between structures and classes 2.5.2 Differentiate between structures and classes
2.5.3 Differentiate between various initializers 2.5.3 Differentiate between various initializers
2.5.4 Define and use property observers 2.5.4 Define and use property observers

2.6 Demonstrate the use of Optional types 2.6 Demonstrate the use of Optional types
2.6.1 Demonstrate how to unwrap Optionals safely 2.6.1 Demonstrate how to unwrap Optionals safely

2.6.2
Apply Optional binding and Optional chaining
(including but not limited to if let, guard let)

2.6.2
Apply Optional binding and Optional chaining
(including but not limited to if let, guard let)

2.7 Evaluate variable scope and shadowing 2.7 Evaluate variable scope and shadowing
3 3

3.1 Create view controllers to implement app logic 3.1

3.2 Describe the view controller lifecycle 3.2 Create multiple Views to implement app logic

3.3 3.3 Use List Views to iterate through collections

3.3.1 Differentiate between types of segues 3.4

3.4 Create a multi-view app with navigation hierarchy 3.5

3.4.1 Create and use Navigation controller 3.6

3.4.2 Create and use Tab Bar controller
3.5 Create and manipulate UIKit objects

3.5.1
Use common view objects such as labels and
image views

3.5.2
Use common controls such as buttons and text
views

3.5.3
Demonstrate the use of IBOutlet and IBAction to
connect storyboard elements to code

Use segues to link view controllers to prepare for, pass
data, and unwind segues

Position and/or layout a single SwiftUI View with standard
Views and modifiers

OLD NEW

iOS UIKit View Building with SwiftUI

No Change

Extract Subviews to simplify the structure of an overlarge
View
Create a multi-view app with navigation Stacks, Links,
and/or Sheets
Use @State, @Binding, @Environment, and/or
@Observable to share data between Views

Updated to align with
Swift UI update

www.certiport.com © Copyright 1996-2024 Pearson Education Inc. or its affiliate(s). All rights reserved. Page 3 of 6

App Development with Swift Associate

NOTES
1 1

1.1 Summarize the design cycle No Change 1.1 Summarize the design cycle
1.1.1 Brainstorm, plan, prototype, evaluate No Change 1.1.1 Brainstorm, plan, prototype, evaluate

1.2 Summarize how sensitive data can be protected and compromised No Change 1.2

1.2.1 Sharing personal and application information No Change 1.2.1 Sharing personal and application information

1.2.2 Security challenges No Change 1.2.2 Security challenges
1.2.3 Legal, ethical and socioeconomic impacts No Change 1.2.3 Legal, ethical and socioeconomic impacts

Added for clarity 1.3
2 2

2.1 Differentiate between basic file types No Change 2.1

2.2 Recognize the assets available in a project Updated for clarity 2.2

2.3 Define how assets are used
Removed to align with Swift UI

Update
2.4 Import an asset to a project and use it correctly Updated for clarity 2.3 Import and/or use an asset

2.5 Select the appropriate actions to hide or show different areas of the user interfaceUpdated for clarity 2.4

3 4

3.1 4.1

3.2 4.2

3.3 Connect UIKit objects on storyboard to a Swift file 4.3

3.3.1
Differentiate between an IBOutlet and an
IBAction

4.4

3.3.2
Determine when to connect an object as an
IBOutlet or an IBAction

4.5

3.4 4.6

4.7

Create and/or apply Interactive Views including, but not
limited to, Button, TextField, Slider, and Toggle
Use @State Property Wrapper to control the
appearance of a View

View Building with Swift UI
Differentiate between imperative and declarative
programming
Create Content Views using Text, Image, Shape,
and/or Color
Implement Modifiers including, but not limited to,
Create Container Views (HStack, VStack, ZStack,
Spacer) and arrange Views inside of Stack Views

Explain the View hierarchy produced by a program

Interface Builder/iOS

Objective reordered from 3 to 4
Swift UI Kit replaced with Swift UI

Given a scenario, select the appropriate object(s) on
the storyboard or the Document Outline
Use the Attributes inspector to non-programmatically
modify the properties of objects and/or a view

Programmatically modify the properties of objects
and/or a view

Assess a visual design with accessibility in mind
Project Navigation XCode Project Navigation

Differentiate between basic file types
After an asset has been imported, recognize available
assets and how they are used in a project

Select the appropriate actions to configure different
areas of the user interface

App Development with Swift Associate Objective Domain Crosswalk
OLD NEW

Planning, Design and Theory Planning and Design

Summarize how sensitive data can be protected and

www.certiport.com © Copyright 1996-2024 Pearson Education Inc. or its affiliate(s). All rights reserved. Page 4 of 6

App Development with Swift Associate

NOTES
4 3

4.1 Write, call and/or evaluate the execution of functions 3.1 Write, call and/or evaluate the execution of functions

4.1.1
Evaluate the use of argument labels,
parameters and returns

3.1.1
Evaluate the use of argument labels,
parameters and returns

4.2 Calculate the results when using various operators 3.2 Calculate the results when using various operators
4.3 Create and evaluate structures 3.3 Create and evaluate structures

4.3.1 Declare the properties of a structure 3.3.1 Declare the properties of a structure
4.3.2 Initialize the properties of a structure 3.3.2 Initialize the properties of a structure
4.3.3 Define methods 3.3.3 Define methods
4.3.4 Create an instance of a structure 3.3.4 Create an instance of a structure
4.3.5 Use an instance of a structure 3.3.5 Use an instance of a structure

4.4 Create and manipulate arrays 3.4 Create and manipulate arrays
4.4.1 Declare and/or initialize an array with values 3.4.1 Declare and/or initialize an array with values

4.4.2
Identify and/or modify an array element using
its index

3.4.2
Identify and/or modify an array element using
its index

4.4.3
Use and/or evaluate array properties and/or
methods

3.4.3
Use and/or evaluate array properties and/or
methods

4.5 Demonstrate how to control the flow of execution 3.5 Demonstrate how to control the flow of execution

4.5.1
Create, analyze and predict loop structures
and their results

3.5.1
Create, analyze and predict loop structures
and their results

4.5.2
Create and interpret the outcome of
conditional statements

3.5.2
Create and interpret the outcome of
conditional statements

4.6 Create, use and/or compare custom enumerations
Removed to align with Swift UI

Update

4.7 3.6

4.7.1 Differentiate between constants and variables 3.6.1 Differentiate between constants and variables

4.7.2 Apply type inference 3.6.2 Apply type inference
4.7.3 Use explicit typing 3.6.3 Use explicit typing

4.8 Use the appropriate naming conventions Updated for clarity 3.7 Use the appropriate naming syntax
4.8.1 Use appropriate camel casing 3.7.1 Use appropriate camel casing
4.8.2 Apply Swift identifier rules 3.7.2 Apply Swift identifier rules

Objective renumbered from 4 to 3.
No Change to objectives

NEW
Swift Language Usage

Objective renumbered from 4 to 3.
No Change to objectives

Swift Language Usage

Declare and/or evaluate constants and variables of
different data types

Objective renumbered from 4 to 3.
No Change to objectives

Declare and/or evaluate constants and variables of
different data types

OLD

www.certiport.com © Copyright 1996-2024 Pearson Education Inc. or its affiliate(s). All rights reserved. Page 5 of 6

NOTES
5 5

5.1

5.2 Given a connection error scenario, determine a solution

5.3 No Change 5.1

5.4 Interpret console error messages Updated for clarity 5.2

5.5 Recognize the purpose of breakpoints
Removed to align with Swift UI

Update

Differentiate between syntax and run-time errors when
building and running an app

Differentiate between syntax and run-time errors when
building and running an app
Interpret error messages

Debugging Debugging
Use the Connections inspector to evaluate whether a
connection error has occurred Removed to align with Swift UI

Update

OLD NEW

App Development with Swift Associate

www.certiport.com © Copyright 1996-2024 Pearson Education Inc. or its affiliate(s). All rights reserved. Page 6 of 6

